Toggle Menu
News >

Cool Class: The Art & Science of Cell Death

November 20, 2018

By Rob Humphreys ’16MBA

Student carving a wooden relief project on tabletop.
Photo by Bill Doster.

Inside the innovative Rollins course that fuses biology, technology, sculpture, and abstract thinking in unconventional ways.

On the surface, combining cell death and art into a single academic endeavor might seem an odd pairing—like some distant cousin to winter biathlon’s amalgamation of cross-country skiing and rifle shooting.

Upon closer examination, students at Rollins are discovering the new course with a macabre name is actually a high-tech, historically grounded way to merge the complementary fields of science and the liberal arts.

Photos by Bill Doster.

Instructors

  • Joshua Almond, associate professor of art
  • Susan Walsh, associate professor of biology

The Scoop

Housed in the Bush Science Center, this eight-credit, laboratory- and studio-based honors course meets twice a week in three-hour sessions. For the biology component, science majors are paired with non-science majors to encourage cross-disciplinary learning.

Twelve students, all sophomores, analyze how and why human cells are “programmed” to die through a naturally occurring process called apoptosis. Concurrently, they explore the idea and symbolism of death by creating eight-inch, computer-generated sculptures inspired by cells they’ve genetically engineered.

Walsh and Almond tag-team a wide range of material, from examining fluorescent human proteins under laser-scanning confocal microscopes to working with 3-D printers, CAD software, and computer-controlled milling machines.

A student with a lab coat and protective glasses taking a DNA sample.
Students put the DNA they create through the process of gel electrophoresis, which separates the DNA by size and determines if it has the correct sequence. Photo by Bill Doster.
Students use chisels to clean up their milled projects.
After the relief sculptures are milled, they require a lot of precision work around the details, chiseling away the extra wood and sanding any rough edges. Photo by Bill Doster.

Like Renaissance masters of old who studied human anatomy by drawing corpses, these students are taking a similar approach to accessing new fields of game-changing knowledge.

“From my perspective, art and science are not separate disciplines—it’s just a way of looking at problems through different lenses,” says Almond. “Today, for instance, 3-D printers are not only being used to manufacture prosthetics—they can harness the power of stem cells to make body parts like ears, noses, and kidneys.”

“This is your STEAM,” adds Walsh, alluding to the combination of the arts with science, technology, engineering, and math. “It’s encouraging that we can work collaboratively to take things in the realm of science and use them as inspiration for art.”

Students looking at cell structure on a computer monitor.
Students view their cells via fluorescence on a confocal microscope. Photo by Bill Doster.

Snapshot

We dropped in on the class as various groups of students were in different phases of their projects. Some students worked diligently in the biology lab purifying the DNA they created or inserting their DNA into human cells while others worked in the computer lab on CAD software perfecting the 3-D modelings of the artwork inspired by their cells. Another group of students set up shop in the art studio, focusing on chiseling away the leftover wood strands from their relief sculptures as they came out of the computer-controlled milling machine. Depending on the heights and complexity of the surface, the milling took anywhere from 23 to 42 hours.

Students with lab coats, gloves, and protective goggles use a dropper to take samples.
Photo by Bill Doster.

Student Perspectives

As an art history and biology double major, Isaac Gorres ’21 appreciates how the course often “pushes me and my classmates out of our comfort zones.” Also, using the confocal microscope to reveal the location of fluorescent-tagged proteins was a real eye-opener.

“When exposed to a certain wavelength of light, the tagged proteins glow,” he explains. “The resulting image offers a beautiful, intimate look at cellular activity, equally valuable aesthetically as it is empirically.”

Art professor and student compare a relief to their computer models.
Photo by Bill Doster.

Raul Tavarez Ramirez ’21, a double major in international relations and environmental studies, values the real-world applications that come with learning 3-D design software and conducting scientific experiments.

“These are assignments that require full intellectual input from the student,” he says, “and the creative, problem-solving skills acquired by doing them are useful in every single job and other aspects of life after graduation.”

Photos by Bill Doster.

Fun Fact

Nobody knows for sure how many cells are in the average human body. But according to a study in 2013 by researchers at the University of Bologna in Italy, the number is 37.2 trillion (give or take) if you’re a 30-year-old who weighs 154 pounds, stands 5 feet 7 inches tall, and possesses a body surface area of 20 square feet.


Related Articles

A collection of cool classes at Rollins College.

Cool Classes

Go behind the scenes of dozens of Rollins’ most innovative courses.

Explore MoreExplore More

Related News

December 23, 2024

Orlando Sentinel: Op-Ed on Culinary Diplomacy

Joseph Poole ’26 is the founder of Breaking Bread, President of Student Government, and is studying Public Policy & Political Economy, Ethics & Global Health at Rollins College.

Orlando Sentinel: Op-Ed on Culinary Diplomacy

December 18, 2024

This Year at Rollins 2024

As 2024 draws to a close, we’re looking back at a few of the many things that we have accomplished together this year at Rollins.

This Year at Rollins 2024

December 18, 2024

Generational Impact

On a personal and professional level, the new dean of Rollins’ Hamilton Holt School knows how the grit and resilience of adult learners can produce life-changing results.

Generational Impact